Ontogeny of region-specific sex differences in androgen receptor messenger ribonucleic acid expression in the rat forebrain.

نویسندگان

  • M D McAbee
  • L L DonCarlos
چکیده

Testosterone and its metabolites are the principal gonadal hormones responsible for sexual differentiation of the brain. However, the relative roles of the androgen receptor (AR) vs. the estrogen receptor in specific aspects of this process remain unclear due to the intracellular metabolism of testosterone to active androgenic and estrogenic compounds. In this study, we used an 35S-labeled riboprobe and in situ hybridization to analyze steady state, relative levels of AR messenger RNA (mRNA) expression in the developing bed nucleus of the stria terminalis, medial preoptic area, and lateral septum, as well as the ventromedial and arcuate nuclei of the hypothalamus. Each area was examined on embryonic day 20 and postnatal days 0, 4, 10, and 20 to produce a developmental profile of AR mRNA expression. AR mRNA hybridization was present on embryonic day 20 in all areas analyzed. In addition, AR mRNA expression increased throughout the perinatal period in all areas examined in both males and females. However, between postnatal days 4 and 10, sharp increases in AR mRNA expression in the principal portion of the bed nucleus of the stria terminalis and the medial preoptic area occurred in the male that were not paralleled in the female. Subsequently, males exhibited higher levels of AR mRNA than females in these areas by postnatal day 10. There was no sex difference in AR mRNA content in the lateral septum, ventromedial nucleus, or arcuate nucleus at any age. These results suggest that sex differences in AR mRNA expression during development may lead to an early sex difference in sensitivity to the potential masculinizing effects of androgen.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی جهش‌های ژن AR در زنان مبتلا به ناباروری

Background : Infertility is a multifactorial disease. Hormonal disorders and genetic factors are important in female infertility. Development and maturation of ovulation are depending on the molecular signaling pathways in response to androgens. Over hundreds of mutations leading to resistance gene function in androgen receptor (AR) has been recorded. One of them is polymorphic region 5'UTR. Th...

متن کامل

P-231: Androgen Receptor Gene Expression in Azoospermia Men

Background: Androgens are critical steroid hormones in progression of spermatogenesis process and determine the male phenotype that their actions are mediated by the androgen receptor (AR), a member of the nuclear receptor superfamily. In the Androgen receptor, transactivation domain encoded by exon 1, DNA binding domain encoded by exons 2 and 3, hinge region encoded by part of exon 4, and C-te...

متن کامل

Expression of Luteinizing Hormone (LH) Receptor Gene in the Ovary of a Prenatally-Androgenized Rat Model of Polycystic Ovary Syndrome Following Androgen Exposure in the Prenatal Period

Introduction: Based on available evidence, exposure of the female fetus to androgens during the prenatal period, by affecting the expression of some genes, can cause polycystic ovary syndrome (PCOS) in adulthood. On the other hand, changes in luteinizing hormone (LH) levels and its receptor are associated with the risk of reproductive disorders, including PCOS. The present study aimed to evalua...

متن کامل

P-84: Characterization of Androgen Receptor Structure and Nucleocytoplasmic Shuttling of the Rice Field Eel

Background: Androgen receptor (AR) plays a critical role in prostate cancer and male sexual differentiation.Mechanisms by which AR acts and regulations of AR nucleocytoplasmic shuttling are not understood well. Materials and Methods: Degenerate PCR and RACE Cloning of AR Gene; Phylogenetic Analysis and Molecular Modeling;Real-time Fluorescent Quantitative RT-PCR; Northern Blot Hybridization;In ...

متن کامل

Estrogen receptor beta messenger ribonucleic acid expression in the forebrain of proestrous, pregnant, and lactating female rats.

Estrogen receptor (ER)beta is present in hypothalamic and limbic neurons of female rat brains, but little is known about its regulation under physiological conditions. To determine whether ER beta expression varies during physiological conditions in which sex steroid hormone profiles are significantly different, we used in situ hybridization to assess ER beta mRNA expression in the periventricu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Endocrinology

دوره 139 4  شماره 

صفحات  -

تاریخ انتشار 1998